The generator matrix

 1  0  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  X  1  1  1  1  1  X  1  1  1  1  1  0  1  1 3X  1  1 3X  1  1  1  1  1  1  1  1 2X  1  1  1  1  1  1  1  1 2X  1  1  1  1  1 2X  1  1  1  1 3X  1  1  1  1  1  1  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1
 0  1  1  2 3X+4  3  0 3X+1  2  1 3X+4  3  X X+2 4X+4 3X+1 X+3  1 X+2  X 2X+1 4X+4 X+3  1 2X+1 3X+2 X+4  0  3  1 3X 3X+3  1 3X 3X+3  1 4X+1 4X+1  2 3X+2 3X+4 X+4 X+1 3X+3  1  X 2X+2  4 X+1 2X 2X+2 4X+4 X+3  1 3X X+1 2X+2 X+4 2X+3  1 2X 4X+1  4 2X+3  1 3X+2  4 2X X+2 3X+1 4X+3  1 2X+1 2X+2 2X+4 X+1 3X 2X+3 X+2 3X+2 X+4 2X+4  1  1  2 2X+4 3X+2 3X+1 3X+4  1  2 3X  0
 0  0 3X 2X  X  0 4X 2X  X 2X 3X 4X 2X 3X 4X 4X  X  X  0 3X  X  0 2X 3X  0 4X 2X  X 3X 4X  0 4X 2X 2X 2X  X  0  X 4X 3X 2X  0 3X  X  0  X 2X 3X 4X 4X  0  X 3X 3X 3X 2X  X 4X  0 4X  X 3X  X 3X 3X  0  0 2X 2X  X 4X  0 4X 3X 2X  0 4X 2X 4X  X 3X 4X 2X  X 3X  X 2X 3X  0  0  0 2X 2X

generates a code of length 93 over Z5[X]/(X^2) who�s minimum homogenous weight is 365.

Homogenous weight enumerator: w(x)=1x^0+156x^365+360x^366+180x^367+608x^370+740x^371+240x^372+216x^375+260x^376+20x^377+20x^380+60x^381+20x^382+84x^385+40x^386+40x^387+32x^390+40x^391+4x^395+4x^400

The gray image is a linear code over GF(5) with n=465, k=5 and d=365.
This code was found by Heurico 1.16 in 0.153 seconds.